1.	Pick out the Odd one from the following						
	(A)	Beach	(B) Sea cliff				
	(C)	Bar	(D) Beach Ridge				
	(E)	Answer not known					
2.		longated sand ridges parallel at by a lagoon is termed as	to the shore separated from the				
	(A)	Barrier island	(B) Beach Ridge				
	(C)	Sand dune	(D) Point bar				
	(E)	Answer not known					
3.		accumulation of sand to the ruction is called as	Lee of and in the shelter of an				
	(A)	Sand Shadow	(B) Sand sheet				
	(C)	Sand levees	(D) The Barchan				
	(E)	Answer not known					
4.	Desc is ca		de of 15°–30° of North and South				
	(A)	Low-latitude desert	(B) Middle-latitude desert				
	(C)	Cold desert	(D) Temperate desert				
	(E)	Answer not known					

5.	Which of the following viewers have been expressed for the causes of Ice age?							
	(i)	Variation and reduces in solar radiations.						
	(ii)	Variation in the composition of earth's atmosphere.						
	(iii)	Shifting of poles and drifting of	Shifting of poles and drifting of continents					
	(A)	(iii) only	(B)	(i) and (iii) only				
	(C)	(i), (ii) and (iii)	(D)	(ii) and (iii) only				
	(E)	Answer not known						
6.	Hillocks made up of harder, durable and resistant rocks on the surface of the peneplains are termed as							
	(A)	Bajada	(B)	Pediment				
	(C)	Cuestas	(D)	Monadnocks				
	(E)	Answer not known						
7.	Stalactite and stalagmites together constitute							
	(A)	Concretion	(B)	Travertine				
	(C)	Sinter	(D)	Drip-stone				
	(E)	Answer not known						
8.	Whi	Which one is not a erosive action of glaciers?						
	(A)	Plucking	(B)	Rasping				
	(C)	Avalanches	(D)	Glacial-drift				
	(E)	Answer not known						

9.	Wear and tear of transported rock particle by river through rubbing and grinding is called by					
	(A)	Attrition	(B)	Abrasion		
	(C)	Corrosion	(D)	Impact		
	(E)	Answer not known				
10.	Loes	ss deposits in the Mississippi va	lley	are called		
	(A)	Sand dune	(B)	Sand hill		
	(C)	Adobe	(D)	Ripple		
	(E)	Answer not known				
11.	Rocks can be fractured by the burrowing animals or growing roots is known as					
	(A)	Frost wedging	(B)	Root wedging		
	(C)	Oxidation	(D)	Hydrolysis		
	(E)	Answer not known				
12.	The	high intensity seismic zone in l	ndia	ıis		
	(A)	The Indo gangetic plains	(B)	The Deccan plateau		
	(C)	The Peninsular region	(D)	The Himalayan Region		
	(E)	Answer not known				
13.	The	age of the earth is				
	(A)	3.2 billion years	(B)	5.6 billion years		
	(C)	4.5 billion years	(D)	3.8 billion years		
	(E)	Answer not known				

14.	Broad based low elevated volcanic cones are termed						
	(A) Active Volcanoes			Extinct Volcanoes			
	(C)	Dormant Volcanoes	(D)	Shield Volcanoes			
	(E)	Answer not known					
15.	The	crater is connected to the magn	na cł	namber by			
	(A)	Parastic cone	(B)	Vent			
	(C)	Dike	Vulcan				
	(E)	Answer not known					
16.	The half life period of C-14 is						
	(A)	6730 years	(B)	5730 years			
	(C)	5735 years	(D)	6625 years			
	(E)	Answer not known					
17.	Comets are made of						
	(A)	Molten rock					
	(B)	Mineral grains					
	(C)						
	(D)	Rock and thin atmosphere of argon					
	(E)	Answer not known					
18.	The	Guttenberg – Weichert disconti	inuit	y is found in which depth?			
	(A)	35 km	(B)	6371 km			
	(C)	33 km	(D)	2900 km			
	(E)	Answer not known					

19.	Approximately how long ago did the Big Bang take place?							
	(A)	10-15 thousand years ago						
	(B)	10-15 million years ago						
	(C)	100-150 million years ago						
	(D)	10-15 billion years ago						
	(E)	Answer not known						
20.	capa		arth outer layers Sial and Sime are elves to the varying geothermic					
	(A)	Datton	(B) Daly					
	(C)	G.B. Airy's	(D) Heiskanen's					
	(E)	Answer not known						
21.	In a peridotite, the P-wave velocity is							
	(A)	8.1 kps	(B) 4.5 kps					
	(C)	6.1 kps	(D) 6.8 kps					
	(E)	Answer not known						
22.	The	geometrical properties of ro	ck fabrics is known as					
	(A)	Petro analysis	(B) Fabric analysis					
	(C)	Rock fabric analysis	(D) Petrofabric analysis					
	(E)	Answer not known						

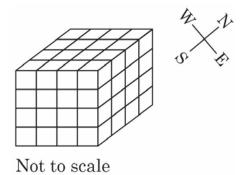
23.	Which of the following statements are true about 'over-step'?							
	(1)	It develops during marine tra	ınsgr	ession				
	(2)	(2) Unconformable sequence where the younger serious progressively on older members of the underlying rock						
	(3)	(3) It develop during marine regression						
	(A)	(1) is correct	(B)	(2) is correct				
	(C)	Both (1) and (2) are correct	(D)	(3) is correct				
	(E)	Answer not known						
24.	surf	inconformity that is not sha face was covered by a thick res the underlying rocks.	_	_				
	(A)	Blended unconformity	(B)	Para conformity				
	(C)	Buttress unconformity	(D)	Angular conformity				
	(E)	Answer not known						
25.	A foliation marked by the parallel orientation of tabular minerals in a metamorphic rock with coarse grain size is called a							
	(A)	Schistosity	(B)	Gneissosity				
	(C)	Crenulation cleavage	(D)	Slaty cleavage				
	(E)	Answer not known						
26.	resp	cleavage within a fold which bect to the axial plane, and whi cicularly in the hinge region.						
	(A)	Axial plane cleavage	(B)	Shear cleavage				
	(C)	Slip cleavage	(D)	Bedding cleavage				
	(E)	Answer not known						

8

395 – Geology (PG-Degree)

27. Identify the below map symbol for joints.

- (A) Strike and dip of inclined
- (B) Strike of vertical joint


(C) Horizontal joints

- (D) Dip of horizontal joint
- (E) Answer not known
- - (A) Sandstone

(B) Marble

(C) Granite

- (D) Basalt
- (E) Answer not known
- 29. How many sets of joints are there in the given diagram

(A) 1 set

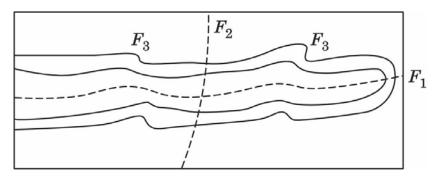
(B) 2 sets

(C) 4 sets

- (D) 3 sets
- (E) Answer not known

30.	Nag	a thrust is an example of ——	fault.			
	(A)	Reverse fault	(B) Normal fault			
	(C)	Left lateral fault	(D) Right lateral fault			
	(E)	Answer not known				
31.		folds are produced by tangers study and vertically at the cre	atial procedures which lift up the est is called ———————————— fold.			
	(A)	Similar fold	(B) Dome fold			
	(C)	Parallel fold	(D) Supratenuous fold			
	(E)	Answer not known				
32.	What type of fold is produced when the strata due to lateral compression with greatest principle stress axis of a horizontal couple with slipping past one another?					
	(A)	Flow folding	(B) Anticlinorium			
	(C)	Flexure folding	(D) Synclinorium			
	(E)	Answer not known				
33.	Fragmentary material produced during faulting is called					
	(A)	Gouge	(B) Fault Breccia			
	(C)	Mylonite	(D) Sliken sides			
	(E)	Answer not known				
34.	Thic	ekening and thinning of beds folds	at crests and troughs is found in			
	(A)	Similar	(B) Open			
	(C)	Concentric	(D) Parallel			
	(E)	Answer not known				

10


395 – Geology (PG-Degree)

- 35. The folds are classified on the basis of,
 - (A) Appearance in cross-section
- (B) Symmetry of fold
- (C) Thickness of limb
- (D) All of the above
- (E) Answer not known
- - (A) Chevron fold

(B) Fan fold

(C) Open fold

- (D) Closed fold
- (E) Answer not known
- 37. Find out the stages of deformation from the given diagram

- (A) F₁-Youngest, F₂ Intermediate F₃-Oldest
- (B) F₁-Oldest, F₂ Intermediate F₃-Youngest
- (C) F₂ and F₃ are Youngest, F₁-Oldest
- (D) F_2 -Oldest, F_1 -Youngest F_3 -Intermediate
- (E) Answer not known
- 38. The process of folding which is considered to be non-tectonic is

11

- (A) Tangential tension
- (B) Intrusions
- (C) Tangential compression
- (D) Differential compression
- (E) Answer not known

39.	_	ual and opposite forces applied	to a	body tend to elongate it, the
	(A)	Tensile stress	(B)	Compressive stress
	(C)	Tangential stress		Working stress
	(E)	Answer not known	(-)	.,8
	` /			
40.	Whi	ch of the statements are true a	bout	stereographic projection?
	(i)	The point on a stereogram recalled pole to the plane	epres	senting normal to a plane is
	(ii)	The role of the plane lies 45° f	rom	the center of great circle
	(iii)	Ploting of poles are useful in plotted	stud	lying more number of planes
	(A)	(i) only	(B)	(i) and (ii) only
	(C)	(i) and (iii) only	(D)	(ii) and (iii) only
	(E)	Answer not known		
41.	Ster	eographic Rotations are used to	o solv	ve geological problems like
	(A)	Earthquake		
	(B)	Structures below unconformit	у	
	(C)	Volcanoes		
	(D)	Tsunamis		
	(E)	Answer not known		
42.		mple method for determining indrical fold is to construct a —		
	(A)	π	(B)	α
	(C)	β	(D)	γ
	(E)	Answer not known		
395 -	Geolo	ogy (PG-Degree) 12		

43.	The process of metasomatic alteration due to the action of superheated steam and fluorine is called as								
	(A) Tourmalinisation (B) Kaolinisation								
	(C) Scapolitisation	(D) Greisening							
	(E) Answer not known								
44.	Which of the following state metamorphism?	ments are true about contact							
	(i) it occurs in country rocks dire	ctly adjacent to Igneous Intrusion.							
	(ii) It is a regional thermal event								
	(iii) Intrusive rock produces thermal aureole.								
	(A) (i) only								
	(B) (i) and (iii) only								
	(C) (i) and (ii) only								
	(D) (ii) and (iii) only								
	(E) Answer not known								
45.	The process of the development of original rock cleavage direction is	bands that are at an angle to the called as							
	(A) Tectonic banding	(B) Kinking							
	(C) Crenulation	(D) Concentration							
	(E) Answer not known								
46.	Which of the following depth zone	comprises Eclogite rock?							
	(A) Epizone	(B) Katazone							
	(C) Mesozone	(D) Anamorphic zone							
	(E) Answer not known								

47.	Choose the right matches among the following:								
	(1)	Granulites was termed by		\rightarrow	Bowen				
	(2)	Quartz – Perthite – Garnet ass	semblage	\rightarrow	Granulite farcies				
	(3)	Quartz – Perthite – Hypersthe	\rightarrow	Normal assemblage of charnockite					
	(4)	Plagioclase – Hypersthene – Diopside – Garnet		\rightarrow	Asilica rich basic assemblage.				
	(A)	(1) and (3) are correct							
	(B)	(1) and (2) are correct							
	(C)	(2) and (3) are correct							
	(D)	(D) (3) and (4) are correct							
	(E)	Answer not known							
48.	Low grade regional and dislocation metamorphism found in								
	(A)	Granulite facies	(B) Am	phi	bolite facies				
	(C)	Eclosite facies	(D) Gre	een schist facies					
	(E)	Answer not known							
49.		tamorphism that occurs burial vergent plate boundary	and he	atin	g is associated with				
	(A)	Retrograde metamorphism							
	(B)	Contact metamorphism							
	(C)	Regional metamorphism							
	(D)	Thermal metamorphism							
	(E)	Answer not known							

50.	The Harker variation diagram plotted percentage of oxides against							
	(A)	Feldspar percentage						
	(B)	Silica percentage						
	(C)							
	(D)	Albite percentage						
	(E)	Answer not known						
51.	Aug	ite rich ultra basic basalt name	d as					
	(A) Olivine Basalt		(B)	Quartz Basalt				
	(C)	Oceanite	(D)	Ankaramite				
	(E)	Answer not known						
52 .	Eute	ectic crystallization noticed in						
	(i)	i) Albite – Cristobalite series						
 (ii) Diopside – Anorthite series (iii) Albite – Anorthite series 								
	(A)	(i) only						
	(B)	B) (ii) only						
	(C)	(i) and (iii) only						
	(D)	(i) and (ii) only						
	(E)	Answer not known						
53.	Shor	nkinite is a variety of ————		Igneous rock.				
	(A)	Granite	(B)	Gabbro				
	(C)	Syonite	(D)	Melasyonite				
	(E)	(E) Answer not known						

- 54. Harzburgite, an ultramagic igneous rocks, is a variety of peridotite consisting mostly of
 - (A) Olivine + Plagioclase
 - (B) Olivine + Low calcium pyroxene
 - (C) Clinopyroxene + Plagioclase
 - (D) Olivine + Micaleous
 - (E) Answer not known
- 55. Dolerites are predominantly madeup of
 - (A) Nepheline in addition to feldspar
 - (B) Pyroxenes are absent
 - (C) Calcic plagioclase and Clinopyroxene Augite
 - (D) Typical absence of feldspar
 - (E) Answer not known
- 56. The following statements are correctly paired in Bushveld complex
 - (i) One of the most remarkable bodies of Igneous rock on Earth
 - (ii) It has great Economic importance
 - (iii) One of the most remarkable bodies of sedimentary rocks
 - (iv) One of the most remarkable bodies of metamorphic rocks
 - (A) (i) and (ii) are correct
 - (B) (i) and (iii) are correct
 - (C) (iii) and (iv) are correct
 - (D) (iv) and (ii) are correct
 - (E) Answer not known

57.	An altered form of dolerite that has a dull green color is called							
	(A)	Vol	canic f	low		(B) Porphyritic		
	(C)	Dia	base			(D) Dyke and Sills		
	(E)	Ans	swer n	ot kno	wn			
58.	The	e form	s of ig	neous	intrus	ions is folded regions are called as		
	(A)	Pha	acolith	\mathbf{s}		(B) Conoliths		
	(C)	Bat	holith	s		(D) Volcanic necks		
	(E)	Ans	swer n	ot kno	wn			
59.	The	e Felsi	ic mine	eral is	a tern	n derived for		
	(A)	Ferromagnesian minerals like Biotite pyroxene, Amphiboles						
	(B)	Feldspar, Felspathoid and Silica						
	(C)							
	(D)	Sal	ic and	femic	miner	als		
	(E)	Ans	swer n	ot kno	wn			
60.	Mat	tch th	ie corre	ect ans	wer :			
	(a)	Grar	nite		1.	Plagioclase dominent		
	(b)	Syen	nite		2.	Alkalifeldspar, Plagioclase dominant		
	(c)	Mon	zonite		3.	Alkalifeldspar felspathoid dominant		
	(d)	Dior	ite		4.	Alkalifeldspar dominant		
		(a)	(b)	(c)	(d)			
	(A)	1	2	3	4			
	(B)	3	2	4	1			
	(C)	1	4	3	2			
	(D)	2	4	3	1			
	(E)	Ans	swer n	ot kno	wn			

Mat	tch th	e follo	wing te	extures :		
(a)	Larg	ge phen	ocryst	\mathbf{s}	1.	Vitrophyric
(b)	Sma	ller siz	e to for	rm	2.	Intergranular
(c)	Grov	v at sa	me rat	es	3.	Poikilitic
(d)	Mati	rix is w	holly g	glassy	4.	Porphyritic
	(a)	(b)	(c)	(d)		
(A)	1	2	3	4		
(B)	4	1	2	3		
(C)	2	4	3	1		
(D)	3	4	1	2		
(E)	Ans	swer no	ot knov	wn		
	-				•	= -
(A)	Suk	ophiti	\mathbf{c}		(B) Poikilitic
(C)	Por	phyrit	ic		(D) Intergrowth
(E)	Ans	swer no	ot knov	wn		
seq	uence	bound				_
(A)	Tra	nsgres	ssine sy	ystems t	ract	
(B)	Hig	sh stan	d syste	ems trac	t	
(C)	Lov	v stanc	d syste	ms tract	,	
(D)	Lov	v stanc	d wedg	e system	ns tract	
(E)	Ans	swer no	ot knov	wn		
	(a) (b) (c) (d) (A) (B) (C) (D) (E) Felce their (A) (C) (E) Wh sequentiate (A) (B) (C) (D)	(a) Larg (b) Sma (c) Grov (d) Matr (a) (A) 1 (B) 4 (C) 2 (D) 3 (E) Ans Feldspar their enc (A) Sub (C) Por (E) Ans When the sequence into shall (A) Tra (B) Hig (C) Lov (D) Lov	(a) Large phenomena (b) Smaller size (c) Grow at sand (d) Matrix is well (a) (b) (A) 1 2 (B) 4 1 (C) 2 4 (D) 3 4 (E) Answer not their enclosure (A) Subophitic (C) Porphyrita (E) Answer not the sequence bound into shalves. (A) Transgress (B) High stand (C) Low stand (D) Low stand (D) Low stand (D)	(a) Large phenocryst (b) Smaller size to for (c) Grow at same rat (d) Matrix is wholly a (a) (b) (c) (A) 1 2 3 (B) 4 1 2 (C) 2 4 3 (D) 3 4 1 (E) Answer not know Feldspar become appreheir enclosure is only (A) Subophitic (C) Porphyritic (E) Answer not know When the sea level rice sequence boundries mainto shalves. (A) Transgressine sy (B) High stand system (C) Low stand system (D) Low stand wedge	 (a) Large phenocrysts (b) Smaller size to form (c) Grow at same rates (d) Matrix is wholly glassy (a) (b) (c) (d) (A) 1 2 3 4 (B) 4 1 2 3 (C) 2 4 3 1 (D) 3 4 1 2 (E) Answer not known (E) Answer not known Feldspar become approximate their enclosure is only partial (A) Subophitic (C) Porphyritic (E) Answer not known When the sea level rises and sequence boundries may be reinto shalves. (A) Transgressine systems to the stand systems traced (B) High stand systems traced (C) Low stand systems traced (D) Low stand wedge systems 	(b) Smaller size to form (c) Grow at same rates (d) Matrix is wholly glassy 4. (a) (b) (c) (d) (A) 1 2 3 4 (B) 4 1 2 3 (C) 2 4 3 1 (D) 3 4 1 2 (E) Answer not known Feldspar become approximately same their enclosure is only partial and the (A) Subophitic (C) Porphyritic (C) Porphyritic (E) Answer not known When the sea level rises and the coasequence boundries may be recognise into shalves. (A) Transgressine systems tract (B) High stand systems tract (C) Low stand systems tract (D) Low stand wedge systems tract

64.	The 1000 km long and 100 km wide Benne trough in the gulf of Guinea in West Africa is best example of an						
	(A)	Aulocogen	(B)	Interior basin			
	(C)	Rift basin	(D)	Foreland basin			
	(E)	Answer not known					
65.	serie	unconformity recognized in seies of continuous reflectors aga coned as a					
	(A)	Depositional sequence	(B)	Sequence boundary			
	(C)	Correlative conformity	(D)	Genetically linked			
	(E)	Answer not known					
66.	and sedi	The deposits are the result of erosive action of migrating channels and further intermixing with alluvial deposits and poorly sorted sediments and are formed due to mass wasting which accumulate at the base of the slope is defined as					
	(A)	Channel lag deposits	(B)	Channel fill deposits			
	(C)	Colluvial deposits	(D)	Lateral accretion deposits			
	(E)	Answer not known					
67.	The sea level changes, resulting regression and transgression cycle on coastal line of world wide in the period of						
	(A)	Eocene glaciation	(B)	Miocene glaciation			
	(C)	Recent glaciation	(D)	Pleistocene glaciation			
	(E)	Answer not known					

68.	A mechanically deposited grainstones of sand size ($\frac{1}{16}$ -2 mm in diameter) is called as						
	(A)	Calcirudite	(B) Calcarinite				
	(C)	Calaite	(D) Shell limestone				
	(E)	Answer not known					
69.	_	irregular opening formed uginous sandstone are called	by the action of carbonate and				
	(A)	Oolicast	(B) Vug				
	(C)	Stylolites	(D) Septeria				
	(E)	Answer not known					
70.	The chemical composition of dolomite is						
	(A)	$(CaMg(CO_3)_2)$	(B) $CaSO_4$				
	(C)	SO_4	(D) $CaCO_3$				
	(E)	Answer not known					
71.	The cross stratification is an example of bimodal and bipolar cross stratification in which two set dip in exactly opposite directions observed in a single vertical section. This type of stratification is the characteristics of tidal environment is called as						
	(A)	Swash cross stratification					
	(B)	Hummocky cross stratifica	tion				
	(C)	Herringbone cross stratification					
	(D)	Linguoid waveforms cross	stratification				
	(E)	Answer not known					

72. In Andhra Pradesh, chromite ores are located in			ocated in					
	(A)	Chaibasa	(B)	Kondapalli				
	(C)	Nausahi	(D)	Sukinda				
	(E)	Answer not known						
73.		The palaeo current data is graphically represented in the form of circular histogram are called as						
	(A)	Histogram	(B)	Pie diagram				
	(C)	Rose diagram	(D)	Bar diagram				
	(E)	Answer not known						
74.	Seiveig technique are screening of standard							
	(A)	Shape	(B)	Size				
	(C)	Geometric mean	(D)	Values of mineral				
	(E)	Answer not known						
75.	What is the phi value of very fine sand?							
	(A)	0.063 mm	(B)	0.250 mm				
	(C)	0.125 mm	(D)	0.500 mm				
	(E)	Answer not known						
76.	Acco	According to Petti John (1975), the rounded class limits ranging						
	(A)	0.40 - 0.60	(B)	0.60 - 1.00				
	(C)	0.25 - 0.40	(D)	0.15 - 0.25				
	(E)	Answer not known						

21

77.	Find the wrong statement from the following:						
	(A)	(A) Greenlitre is almost entirely restricted to permain rocks					
	(B)	Chamosite is the most conmineral	nmoı	n phanerozoic iron silicate			
	(C)	Geothilic occurs as a sparry co	emer	nt			
	(D)	Pheneozoic deposits hematite	occu	rs as replacement of Ooids			
	(E)	Answer not known					
78.	solu arra	Sediments precipitated by chemical or bio chemical process such as solution at the site of their accumulation showing interlocking arrangement of grains without intergranular pore spices. This type of texture is known as					
	(A)	Non-clastic texture	(B)	Clastic texture			
	(C)	Organic texture	(D)	Surface texture			
	(E)	Answer not known					
79.	Give	e one example for least stable m	iiner	al.			
	(A)	Olivine	(B)	Muscovite			
	(C)	Hornblende	(D)	Quartz			
	(E)	Answer not known					
80.	Calc	lera is a term used to express					
	(A)	Very large sized craters that have collapsed with the passage of time					
	(B)	Huge depression created by g	lacia	l erosion in the mountains			
	(C)	Extensions of many parallel n	noun	tain ranges			
	(D)						

Answer not known

(E)

81.	The mechanical stability of the feldspar is lower than the quartz because						
	(A)	Feldspar are softer and have a stronger cleavage					
	(B)	Quartz are composed of poly	-	_			
	(C)	Quartz grains is not possible					
	(D)	Felspars are softer and havin	g we	ak cieavage			
	(E)	Answer not known					
82.	Rege	olith composed of					
	(A)	Si - Al - Fe only	(B)	$SiO_2 - O_2 - MgCO_3$			
	(C)	$Al-Ag-CaSO_4\cdot 2H_2O$	(D)	$Fe - AlSiO_3 - O_2$			
	(E)	Answer not known					
83.	Increased moisture retention within the fractured materials of a fracture or fault zone is often manifested as distinctive vegetation or small impounded bodies known as						
	(A)	Sag ponds	(B)	Evergreen forests			
	(C)	Water bodies	(D)	None of the above			
	(E)	Answer not known					
84.	Which of the following study can be done through remote sensing technique?						
	(i)	Flood plain mapping					
	(ii)	Landuse and Land cover map	ping				
	(iii)	Mapping of underground min	ing				
	(A)	(i), (ii) and (iii)	(B)	(i) and (iii) only			
	(C)	(i) and (ii) only	(D)	(ii) and (iii) only			
	(E)	Answer not known					

85.	Remote sensing is an important source of GIS data providing in the form of						
	(A)	CAD	(B)	Digital image			
	(C)	Cartography	(D)	Statistics			
	(E)	Answer not known					
86.	The	land use/land covered map is	main	ly based on the			
	(A)	Vector data	(B)	Raster data			
	(C)	Satellite digital image	(D)	Attribute data			
	(E)	Answer not known					
87.	The ————— slide of landslide have a planar, or two dimensional surface of rupture.						
	(A)	Rotational slide	(B)	Topples			
	(C)	Translational slide	(D)	Lateral spread			
	(E)	Answer not known					
88.	The flood may be caused due to						
	(A)	Heavy precipitation					
	(B)	• • •					
	(C)	Breach of Dam					
	(D)	(A), (B) and (C)					
	(E)	Answer not known					

89.	Whic	h of the following factors at ing?	tribı	ate to	the	process	of	mass
	(i)	Structural characteristic of a region						
	(ii)	Composition of the rock						
	(iii)	Climate and vegetation						
	(A)	(i) and (ii) only	(B)	(i) and	d (iii)	only		
	(C)	(i), (ii) and (iii)	(D)	(ii) an	d (iii) only		
	(E)	Answer not known						
90.	is extremely slow downward movement of dry surfacial matters.							
	(A)	Lahars	(B)	Creep)			
	(C)	Solification	(D)	Debri	s flov	V		
	(E)	Answer not known						
91.		h of the following classification oad knowledge of the geologica				carried	out	based
	(A)	Proved reserves	(B)	Indica	ated 1	reserves	j	
	(C)	Inferred reserves	(D)	Confi	rmed	reserve	es	
	(E)	Answer not known						
92.	In In	dia, the largest reserve of Baux	kite i	is foun	d in			
	(A)	Gujarat	(B)	Jhark	hand	l		
	(C)	Odisha	(D)	Tamil				
	(E)	Answer not known	` /					
	` /							

93.		traps may be constructed trace of silting in the reservoir.	cted	upstream in order to check
	(A)	Silt	(B)	Clay
	(C)	Sandstone	(D)	Slate
	(E)	Answer not known		
94.		portion of a dam that touches is called	the	ground on the downstream
	(A)	Heel of the dam	(B)	Spill way
	(C)	Axos of dam	(D)	Toe of the dam
	(E)	Answer not known		
95.		me of water in cubic meter as and normal pool level is represent.		-
	(A)	Surcharge storage	(B)	Dead storage
	(C)	Useful storage	(D)	Reservoir yield low
	(E)	Answer not known		
96.	Mett	cur dam constructed by	type	e of dam structure.
	(A)	Masonry structure		
	(B)	Gravity type masonry structur	e	
	(C)	Masonry cum earth dam		
	(D)	Earth dam		
	(E)	Answer not known		

97.	The examination of A and B horizons in soil and basal glacial till is done for the presence of						
	(A)	Copper	(B)	Gold			
	(C)	Zinc	(D)	Cadmium			
	(E)	Answer not known					
98.	The	concept of the rock cycle given	by				
	(A)	Lebrbuchder	(B)	Roth's Allegemeine			
	(C)	F.W. Clarks	(D)	James Hutton			
	(E)	Answer not known					
99.	Which of the following method used electric current to investigate subsurface lithological conditions?						
	(A)	Gravity method	(B)	Radiometric method			
	(C)	Resistivity method	(D)	Magnetic method			
	(E)	Answer not known					
100.		ave entering a relatively high refracted angle is the critical a		-			
	(A)	P-waves	(B)	S-waves			
	(C)	L-waves	(D)	Head waves			
	(E)	Answer not known					
101.	Salt	dome occurs at shallow depths	is id	entified using this method			
	(A)	Arc shooting	(B)	Profile shooting			
	(C)	Refraction method	(D)	Fan shooting			
	(E)	Answer not known					

102.	The unit		the resistant measured in the
	(A)	m/sec	(B) mgal
	(C)	Gamma	(D) Ohm.m
	(E)	Answer not known	
103.	Radi	o carbon dating technique is us	ed to estimate the age of
	(A)	Water	(B) Human body
	(C)	Rocks	(D) Buildings
	(E)	Answer not known	
104. The planktonic foraminiferal biostratigraphy of the gulf coasta plains favours the inclusion of the Dunian system.			
	(A)	Cretaceous	(B) Tertiary
	(C)	Permian	(D) Triassic
	(E)	Answer not known	
105.		Guryul ravine of vihi district known sections where the	in Kashmir provides one of the boundary.
	(A)	Cretaceous – Paleogane	(B) Cretaceous – Tertiary
	(C)	Precambrian – Cambrian	(D) Permian – Triassic
	(E)	Answer not known	

106.	. Find out the odd one :			
	The lower Cambrian has been subdivided on the basis of the foss fauna into			
	(A)	Tommotian	(B) Emsian	
	(C)	Atdabanian	(D) Lenian	
	(E)	Answer not known		
107.	The activ	origin of Siwalik system is vity.	closely related to —	
	(A)	Fluvial		
	(B)	Orogenic		
	(C)	Glacial		
	(D)	Combined action of Fluvial an	d glaciate	
	(E)	Answer not known		
108.		Pinjor and the boulder conglorer part of upper siwalik has bee	merate formation comprising the n assigned a ———————————————————————————————————	
	(A)	Pleistocene	(B) Holocene	
	(C)	Pliocene	(D) Miocene	
	(E)	Answer not known		
109.	The	basic unit in Biostratigraphy is	S	
	(A)	Subzone	(B) Chron	
	(C)	Zone	(D) System	
	(E)	Answer not known		

110.	O. The thickness of the trichinopoly stage is about						
	(A)	300 m	(B) 500 m				
	(C)	800 m	(D) 900 m				
	(E)	Answer not known					
111.	The	Stratigraphic sequence Jurassi	c of Ladakh is as follows :				
	Start	ting from older $ o$ younger					
	(A)	Monotis shales \rightarrow kioto lime sandstone	stone \rightarrow spiti shales \rightarrow Giumal				
	(B)	Giumal sandstone \rightarrow monotis shale \rightarrow spiti shales \rightarrow kioto limestone					
	(C)	Giumal sandstone \rightarrow spiti shales \rightarrow kioto limestone \rightarrow monotis shales					
	(D)	Monotis shales \rightarrow spiti shales \rightarrow kioto limestone \rightarrow Giumal sandstone					
	(E)	Answer not known					
112.	The	silurian sequence in the Spiti re	egion is named as				
	(A)	Lipak formation	(B) Takche formation				
	(C)	Panjal formation	(D) Dogra formation				
	(E)	Answer not known					
113.	The	semri groups of lower vir	ndhyans are comprising about				
	(A)	1300	(B) 1400				
	(C)	800	(D) 400				
	(E)	Answer not known					

114.		rocks of the Delhi supergroup ntain chain.	are	exposed in the ———		
	(A)	Himalaya	(B)	Eastern Ghats		
	(C)	Aravalli	(D)	Assam		
	(E)	Answer not known				
115.	The	age of Cheyair group is				
	(A)	Cenozoic	(B)	Mesozoic		
	(C)	Paleozoic	(D)	Proterozoic		
	(E)	Answer not known				
116.	16. Find the oldest stratigraphic group is the following list					
	(A)	Rannibennur group	(B)	Chitradurga group		
	(C)	Bababudan group	(D)	Dharwar super group		
	(E)	Answer not known				
117.		northern peninsula was affect of the Archean Era that give r				
	(A)	Dharwar folding	(B)	Amgaon orogenies		
	(C)	Bundelkhand Gneiss	(D)	None of the above		
	(E)	Answer not known				
118.	The singhbhum region of Bihar, Mayurbhanj, Keonjhar and Bonai districts of Orissa are well known for rich deposits of iron and					
	(A)	Copper	(B)	Lead		
	(C)	Mica schist	(D)	Manganese		
	(E)	Answer not known				

119.	119. The term "Ordovician" was named after a						
	(A)	Place	(B) '	Tribe			
	(C)	Rock type	(D)	Geologist			
	(E)	Answer not known					
120.	The	combination of two or more syn	them	s is termed as			
	(A)	Sub synthems	(B)	Super synthems			
	(C)	Miosynthem	(D)	None of the above			
	(E)	Answer not known					
121.	The principal of original horizontality states that						
	(A)	Most rocks in the earth's crust are layered horizontally					
	(B)	Igneous rocks from essentially horizontal layers					
	(C)	Metamorphic gradients are essentially horizontal before deformation					
	(D)	Sediments are deposited as essentially horizontal layers					
	(E)	Answer not known					
122.	The betw	triceratops, three-horned dinc	osaur	found near the boundary			
	(A)	Upper cretaceous and Eocene					
	(B)	Middle to upper cretaceous					
	(C)	Lower cretaceous					
	(D)	Jurassic					
	(E)	Answer not known					

123.	The and	e dinosaurs are divided into two main group namely saurischi d							
	(A)	Pachypodosaria	(B)	Coculorosauria					
	(C)	Sauropoda	(D)	Ornithischia					
	(E)	Answer not known							
124.		Indian elephants, the Elephan donta, Mastodont and their		-					
	(A)	Artiodactyla	(B)	Proboscidea					
	(C)	Equidae	(D)	Hominidae					
	(E)	Answer not known							
125.	The life cycle of many foramunifera consists of an orderly succession of sexual and asexual phases known as								
	(A)	monothalamous	(B)	agamont					
	(C)	alternation of generation	(D)	Gametogenesis					
	(E)	Answer not known							
126.	The j	popular analyes among the num	nerio	cal taxonomists is					
	(A)	Population diversity							
	(B)	Composition of faunal assemblage							
	(C)	Faunal Association							
	(D)	Synecology of species							
	(E)	Answer not known							

127.	27. The sort of ligament which extends both in front of and behin beaks in certain bivalved mollus KS is called as					
	(A)	Ancestruler	(B)	Anisomyarian		
	(C)	Anapsidan	(D)	Amphidetic		
	(E)	Answer not known				
128.	The s	suture is marginal with Cepha	lic sł	neid but eyes are absent		
	(A)	Opisthoparian	(B)	Protoparian		
	(C)	Hypoparian	(D)	Proparian		
	(E)	Answer not known				
129. Give one example of primitive trilobites which is having number of Thoracic segments, forty five and more.						
	(A)	Paradoxides	(B)	Olenellus		
	(C)	Agnostus	(D)	Cyclophage		
	(E)	Answer not known				
130.	Whic	h of the following is incorrectly	y pai	red?		
	(1)	Monograptus – Siluriai	1			
	(2)	Didymograptus – Cambri	an			
	(3)	Tetragraptus – Ordovic	eian			
	(4)	Leptograptus – Ordovic	ian			
	(A)	(1) is incorrect	(B)	(3) is incorrect		
	(C)	(2) is incorrect	(D)	(4) is incorrect		
	(E)	Answer not known				

131.	In c	ephal	opods,	the Go	niatit	te suture line was abundant from			
	(A) Devonian to upper carboniferous								
	(B) Middle carboniferous(C) Triassic and Jurassic								
	(C)			na oura	assic				
	(D)		mian	. 1					
	(E)	Ans	wer no	ot know	/n				
132.	Mat	tch the	e follo	wing:					
	(a) Red coral				1.	Corallium			
	(b)	Orga	n pipe	coral	2.	Tubipora			
	(c) Blue coral				3.	Heliopora			
	(d)	Stony coral (a) (b) (c)			4.	Hexacorallia			
					(d)				
	(A)		2		4				
	(B)		4		1				
	(C)	4	3	2	1				
	(D)	3	4	1	2				
	(E)	Ans	wer no	ot know	n				
133.	Gra	ptolite	es wer	e abun	dant	which of the following geological age?			
	(A)	Can	nbrian	L		(B) Carboniferous			
	(C)	Ord	ovicia	n to Sil	urian	(D) Devonian			
	(E)			ot know		, ,			
	` /								

134.		ely coiled nautiloids shells in gnated as	whic	ch the coils do not touch are			
	(A)	Crytocera cones	(B)	Bactriti cones			
	(C)	Gyroceracones	(D)	Gyroceratiti cones			
	(E)	Answer not known					
135.		An amorphous horny substances, as finger nails, the skeleton of graptolites e^k is called as					
	(A)	Chilaria	(B)	Chitin			
	(C)	Conch	(D)	Conchyolin			
	(E)	Answer not known					
136.	Glab	The body is oval in shape. Head should is larger than the Pygiblium. Glabella is not reaching the anterior border and not expanding in front is					
	(A)	Olenus	(B)	Calymene			
	(C)	Paradoxides	(D)	Ollenellus			
	(E)	Answer not known					
137.	In trilobites, the single axial suture is called						
	(A)	Median suture	(B)	Facial suture			
	(C)	Rostral suture	(D)	Hypostomal suture			
	(E)	Answer not known					

138.		ch of the following statements bites according to 'Beecher'?	are true about classification of			
	(i)	Ontogeny as shown by various	growth stages			
(ii) Nature of cephalon (or) pygidium (or) both						
	(iii)	Nature and presence (or) absence of eyes				
	(A)	(i) only	(B) (i) and (ii) only			

(A) (i) only (B) (i) and (ii) only (C) (i), (ii) and (iii) (D) (ii) only

(E) Answer not known

- 139. In this type of preservation, the original organic substance is completely replaced by inorganic substance molecule by molecule
 - (A) Recrystallization
 - (B) Petrification
 - (C) Replacement of mineralization
 - (D) Distillation
 - (E) Answer not known
- 140. Under certain conditions ground waters completely dissolve original shell or skeletal matter and deposit some other substance in its place. Calcite, dolomite, pyrite and quartz are common replacing substance in this process.

(A) Premineralization(B) Distillation(C) Petrification(D) Impregnation

(E) Answer not known

141.	The organic materials, which has been rolled and abraded accumulating over a considerable period before their deposition are termed as								
	(A)	Derived fossils	(B)	Miner	alized f	fossil			
	(C)	Facies fossil	(D)	Rema	in fossi	ls			
	(E)	Answer not known							
142.	142. The value of α is lowest, γ highest, β intermediate between two refractive indices is called					ween the			
	(A)	Interference colour	(B)	Birefr	ingence	9			
	(C)	Optical normal	(D)	Isotop	oic				
	(E)	Answer not known							
143.	A focused X-ray beam strikes the samples and the detector moves in the circular arc, usually vertical to measure diffraction intensities for 2θ value								
	(A)	very low angle to more than 1	00°						
	(B) very low angle to more than 150°								
	(C) very high angle to more than 200°								
	(D)	very low angle to more than 2	00°						
	(E)	(E) Answer not known							
144.	The s	shape and size of unit cells of mineral are determined by							
	(A)	Refraction method	(B)	Reflec	ction me	ethod			
	(C)	X-ray diffraction	(D)	Micro	scopic r	netho	d		
	(E)	Answer not known							

145.	two]	tetragonal system four rectang horizontal crystallographic axe cal axes form	-	
	(A)	Prism of II nd ordered		
	(B)	Basal Pinacoid (001)		
	(C)	Prism of Ist ordered (110)		
	(D)	Dy pyramid Ist ordered (hh1)		
	(E)	Answer not known		
146.	Choo	ese the right match among type	Э	
	New	ton's scale of interference colou	ırs	
	1.	First order – grey, white, yell	ow a	nd red
	2.	Second order – violet, blue, gr	een,	yellow, orange and red
	3.	Third order – grey, white, ind	igo	
	4.	Fourth and above – Pale yello	w ar	nd Pale red
	(A)	1 and 3 are correct	(B)	1 and 2 are correct
	(C)	2 and 3 are correct	(D)	3 and 4 are correct
	(E)	Answer not known		
147.	Inter	rference colour of the quartz is		
	(A)	Higher order yellow	(B)	First order grey
	(C)	Higher order pink	(D)	Isotropic
	(E)	Answer not known		
148.		ch one of the following m xagonal Dipyramidal of Hexag		· ·
	(A)	Benitoite	(B)	Beryl
	(C)	Pyrrhotite	(D)	Molybdenite
	(E)	Answer not known		
		39		395 – Geology (PG-Degree)

140	Who	n the diamond is exposed to the		o it owhibita?
149.	(A)	n the diamond is exposed to the Phosphorescence		Fluorescence
	(C)	•	` /	Play of colours
	(E)	Answer not known		Tray of colours
150.	Choo	ose the right matches among ty	pe	
	1.	Contact twin – Gypsum		
	2.	Multiple twin – Orthoclase		
	3.	Penetration twin – Staurolite		
	4.	Cyclic twin – Pyroxene		
	(A)	1 and 3 are correct	(B)	1 and 2 are correct
	(C)	2 and 3 are correct	(D)	3 and 4 are correct
	(E)	Answer not known		
151.	Tridy	ymite is formed at temperature		
	(A)	< 573°	(B)	> 870°
	(C)	between 573° and 870°	(D)	between 563° and 663°
	(E)	Answer not known		
152.	Bioti	te mineral chemical compositio	n is	
	(A)	$\mathrm{K}\mathrm{Mg}_3(\mathrm{Alsi}_3\mathrm{O}_{10}),(\mathrm{F,OH})$		
	(B)	$K (Mg, Fe)_3 (Al, Fe) Si_3 O_{10} (Ol$	H,F)	2
	(C)	$KAl_2 (AlSi_3 O_{10}) (OH)_2$		_
	(D)	K(Li, Al) ₃ (Si, Al) ₉ O ₁₀ (OH,F) ₂		

Answer not known

(E)

153.	153. The α -crystobalite quartz is formed in the system of			the system of
	(A)	Cubic	(B)	Tetragonal
	(C)	Hexagonal	(D)	Monoclinic
	(E)	Answer not known		
154.	Jade	ite is a high-pressure pyroxene	four	nd in metamorphic rock
	(A)	Green Schist facies	(B)	Blue Schist facies
	(C)	Eclosite facies	(D)	Amphibolite facies
	(E)	Answer not known		
155.	Horn	ablende is a mineral commonly	foun	d in the association of
	(A)	Metamorphic rocks	(B)	Sedimentary rocks
	(C)	Igneous rocks	(D)	Sandstone
	(E)	Answer not known		
156.		erals breaks with an irregular s	surfa	ace with concentric lines like
	(A)	Even fracture	(B)	Hackly fracture
	(C)	Uneven fracture	(D)	Conoidal fracture
	(E)	Answer not known		

157.	Match	the fo	llowing	correctly.
------	-------	--------	---------	------------

Minerals

Streak colour

- (a) Malachite
- 1. Orange
- (b) Magnetite
- 2. Light blue
- (c) Realgar
- 3. Black
- (d) Azurite
- 4. Pale green

- (a)
- (c)
- (A) 1
- 2
- (B) 4
- $egin{array}{ccc} 2 & 4 \ 1 & 2 \end{array}$

(d)

- (C) 4
- 1
 - 2 1
- (D) 3
- 2
 - 1 2
- (E) Answer not known

(b)

3

3

3

4

158. Which of the following is correctly paired?

- 1. Orthopyroxene Occurs in ultrabasic igneous rocks
- 2. Eustatic
- FeSiO $_3$
- 3. Spodumene
- LiAlSi₂O₆
- 4. Diopside
- Orthorhombic

(A) 1

(B) 2

(C) 3

- (D) 4
- (E) Answer not known

159. The specific gravity of Galena is

(A) 7.8

(B) 7.3

(C) 7.6

- (D) 6.7
- (E) Answer not known

160.	Mohr's scale of mineral hardness arranged in eighth placed mineral is					
	(A)	Gypsum		(B) Apatite		
	(C)	Corundum		(D) Topaz		
	(E)	Answer not known				
161.	Hali	te (NaCl) possess————	bond	ing.		
	(A)	Covalent	(B)	Organic structures		
	(C)	Ionic	(D)	Isotopes		
	(E)	Answer not known				
162.	Dian	nonds are recovered from				
	(i)	Kimberlite				
	(ii)	Lamproites				
	(iii)	Marble				
	(iv)	Placer				
	(A)	(i) and (ii) only	(B)	(i), (ii) and (iv) only		
	(C)	(iii) and (iv) only	(D)	(i) only		
	(E)	Answer not known				
163.		macerals that originate froification including spores and	_			
	(A)	Vitrinite	(B)	Liptinite		
	(C)	Inertinite	(D)	Cutinite		
	(E)	Answer not known				

164. The percentage range of newly deposited sand porosity is (A) 20 - 24%(B) 40 - 50%(D) 40 - 42%(C) 30 - 32%Answer not known (E) 165. The hydrocarbon substances that are black, hard, insoluble and nonvolatile which occur in vein deposits are called (A) Earthwax (B) Pyrobitumens (C) Natural asphalt (D) Kerogen (E) Answer not known 166. The age of the tertiary coals is called Lower carboniferous age (A) (B) Eocene to miocene age (D) Permian age Upper carbonifereous age (C) Answer not known (E) 167. Which of the following is not obtained as a fraction during the refining of petroleum?

(A) Kerosene

(B) Natural gas

(C) Lubricating oil

- (D) Bitumen
- (E) Answer not known

168.		The second largest chrystotile asbestos deposits in the world were exploited until 2003 is						
	(A)	Ural mountains in Russia						
	(B)	Thetford in Quebec, Canada						
	(C)	Zimbabwe, South Africa						
	(D)	Mississippi valley of North An	neric	a				
	(E)	Answer not known						
169.		fractory material CaO Mgo is ning it at about	mar	nufactured from dolomite by				
	(A)	1600°C	(B)	$1500^{\circ}\mathrm{C}$				
	(C)	2000°C	(D)	800°C				
	(E)	Answer not known						
170.	The	chemical composition of malach	nite i	\mathbf{s}				
	(A)	$\mathrm{Cu}_2(\mathrm{OH})_2\mathrm{CO}_3$	(B)	$\mathrm{Cu}_{2}\mathrm{Cl}\left(\mathrm{OH}\right)_{3}$				
	(C)	CuFeS_2	(D)	$\mathrm{Cu}_3\mathrm{As}\mathrm{S}_4$				
	(E)	Answer not known						
171.	Whic	ch of the following gangue mine	ral a	associated with gold?				
	(A)	Limonite	(B)	Calcite				
	(C)	Zircon	(D)	Monosite				
	(E)	Answer not known						

172.	are (A) (B) (C)	called Pne Ort Syn Epig	_	ectic ic c		ts that result from magmatic processes
173.	Whi	ich of	the fol	llowing	g mine	eral contains uranium?
(A) Monazite (B) Thanite						
	` ,		notite			(D) Thanianite
	(E)		swer ne	ot knov	wn	(D) Illumumo
174.	com (a) (b) (c)	Mag: Hem Limo Side: (a) 4 1 2	ion. netite atite onite	(c) 2 3 4 3	1. 2. 3. 4. (d) 1 4 1 2	$\mathrm{Fe_2O_3}$

175.		ndia, occurrence of uranium inded at	exploit	able quanties have been
	(A) (C) (E)	Jadugade uranitemine Udaipur uranitemine Answer not known	, ,	salmer uranitemine ssoriee uranitemine
176.		type 2 fluid inclusions observ	_	drothermal ore deposits
	(A)	Water vapour occupies >60% moderate salinity; effervesc the critical point		
	(B)	CO ₂ rich inclusion, with little in the inclusion occur in liquid		-
	(C)	Highly saline aqueous inclus brines from melt at magmatic		
	(D)	Liquid aqueous inclusion of water vapour bubble and dens		•
	(E)	Answer not known		
177.	surfa	supergene enrichment of sulphace oxidation of sulphides can		-
	(A)	unsaturated zone	(B) sat	urated zone
	(C)	saprolite zone	(D) lim	onite zone
	(E)	Answer not known		
178.	The	melting point of germanium is		
	(A)	449.5°C	(B) 29.	78°C
	(C)	937.4°C	(D) 320	
	(E)	Answer not known	. ,	
		47	;	395 – Geology (PG-Degree)

179.		Disseminated lead zinc deposit is gritty conglomeratic dolomite and quartzite of Jawar, Rajasthan is an example of							
	(A)	Breccia filling deposits	(B)	Solution-Cavity filling					
	(C)	Pore space filling	(D)	Vesicular filling					
	(E)	Answer not known							
180.	solut large	most deposits have been forme ion whether liquid, igneous or class as distinct from entration.	r ga	seous. Which constitute one					
	(A)	Lindgrens classification							
	(B)	Beck and Berg classification							
	(C)	Nigilli classification							
	(D)	Schneiderhohn classification							
	(E)	Answer not known							
181.		of the World's production of from	pla	tinum and platinum metals					
	(A)	Hydrothermal deposits	(B)	Residual deposits					
	(C)	Placer deposits	(D)	Sublimation deposits					
	(E)	Answer not known							
182.	repea	out the following type of gran ated melt – extraction from the se of magma is lithospheric man	san	-					
	(A)	A-type granitoids	(B)	S-type granitoids					
	(C)	I-type granitoids	(D)	M-type granitoids					
	(E)	Answer not known							

183.		electrical resistivity survey, thation is	ne resistivity values for the clay				
	(A)	low values below 5 ohm.m					
	(B)	high values above 100 ohm.m	– 200 ohm.m				
	(C)	201 - 300 ohm.m					
	(D)	> 300 ohm.m					
	(E)	Answer not known					
184.	Find	Find the odd one out					
	(i)	Map large, burried valleys, l limestone areas	ocate sink holes and caverns in				
	(ii)	Correlating lithology and drawing geophysical sections					
	(iii)	Fresh-salt water interface by constant separation profiling					
	(iv)	Bed rock profile for sub surface studies					
	(A)	only (i)	(B) only (ii), (iii)				
	(C)	only (iv)	(D) only (iii), (iv)				
	(E)	Answer not known					
185.		landward sloping fresh water the depth governed by the	saltwater interface are formed				
	(A)	Hale-shaw model	(B) Darcy's law				
	(C)	Ghyben-Herberg relations	(D) Thies method				

(E) Answer not known

186.	36. A groundwater well discharging from the freshwater zone ca the saltwater to move upwards towards the well.		
	(A)	Discharge	(B) Leveling
	(C)	Upconing	(D) Hydraulic conductivity
	(E)	Answer not known	
187.	Whic	h of the following isotopes has	the shortest half life?
	(A)	Fluorine-18	(B) Carbon-11
	(C)	Tritium	(D) Carbon-14
	(E)	Answer not known	
188.	Whic	h one is not suitable for the rai	nwater harvesting method?
	(A)	groundwater level is raised	
	(B)	reduce the crack formation in	house
	(C)	saltwater intrusion into the la	nd is arrested
	(D)	increase the specific retention	value
	(E)	Answer not known	
189.	_	ods used to estimate floods as left over in the past –	discharge based on high water
	(A)	ultrasonic method	(B) area velocity method
	(C)	slope area method	(D) moving boat method
	(E)	Answer not known	

190.	The calle		potential evapotranspirations is
	(A)	Odometre	(B) Lysimeter
	(C)	Nephelometer	(D) Resistivity metre
	(E)	Answer not known	
191.		ch type of rotary drill bits is sur formation?	itable for unconsolidated clay and
	(i)	Three ways	
	(ii)	Fish tail	
	(iii)	Rock roller	
	(A)	only (i)	(B) only (i) and (ii)
	(C)	only (ii)	(D) only (iii)
	(E)	Answer not known	
	` ,		
192.		a airline of length 50 m is sub submergence is	merged in water upto 30 m then
	(A)	60%	(B) less than 60%
	(C)	80%	(D) 20%
	(E)	Answer not known	
193.	usua	-	per of aquifers has to penetrate is shological log of the area and and
	(A)	Induction logging	(B) Drilling time log
	(C)	Temperature log	(D) Sonic log
	(E)	Answer not known	

194. The porosity range of gravels

(A) 15 - 30%

(B) 25 - 40%

(C) 30 - 45%

(D) 15 –35%

(E) Answer not known

195. The unit of Transmissivity is given by

(A) m/day

(B) m²/day

(C) m³/day

(D) dimensionless

(E) Answer not known

196. Choose the correct statement from the below option:

(i) Volcanic rock can form highly permeable equifers

(ii) In sandstone, the porosity and yield have been increased by cement

(iii) Igneous and metamorphic rocks are impermeable in nature

(iv) Rhyolites are less permeable than basalt

(A) only (i)

(B) only (i) and (ii)

(C) only (i), (iii), (iv)

(D) (i), (ii), (iii), (iv)

(E) Answer not known

197. The reason behind saturation by rain and capillary rise destroy the film causing loss of stability

(A) Gravitational moisture

(B) Capillary moisture

(C) Hygroscopic moisture

(D) None of the above

(E) Answer not known

198.		out the method used to dall over an area	eteri	mine	the	average	depth	of
	(A)	Isogonal method	(B)	Symo	on's r	nethod		
	(C)	Isohyetal methods	(D)	Arithmetic Mean method				
	(E)	Answer not known						
199.	A completely saturated aquifer that is bounded above by a semi- pervious layer and below by a layer that is either impervious or semi-pervious							
	(A)	Leaky Aquifer	(B)	Conf	ined	Aquifer		
	(C)	Free ground water Aquifer	(D)	Press	sure .	Aquifer		
	(E)	Answer not known						
200.	exists within and in equilibrium with water rich volatile fluids that are derived from a magma.							
	(A)	Juvenile water	(B)	Conn	ate v	water		
	(C)	Metamorphic water	(D)	Fossi	il wa	ter		
	(E)	Answer not known						